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Abstract
Properties of a discretized coherent state representation (DCSR) and its
connection to Gabor frame analysis are discussed. The DCSR approach was
recently shown (Andersson L M 2001 J. Chem. Phys. 115 1158) to yield
a practical computational scheme for quantum dynamics, and an iterative
scheme for finding the identity operator was proposed. In the present work, we
suggest a proof of fast convergence of the iterative scheme for computing the
canonical dual to any given countable frame in a Hilbert space. The method
of frames is concerned with the use of a non-orthogonal, over-complete set
of functions for expansion of an arbitrary function. We also introduce the
concept of ‘representations of the identity operator’ and show how to expand
arbitrary vectors using the frame elements, without explicit diagonalization
to an orthonormal basis. Numerical examples that illustrate the method are
shown.

PACS numbers: 02.70.−c, 02.30.Mv, 03.65.−w

1. Introduction

The aim of this paper is to use a discrete set of Gaussian coherent states as an adaptable and
economic way of representing wavefunctions. In a previous work [1], an iterative refinement
for computing expansion coefficients was proposed and shown numerically to give a stable
way of representing functions using coherent states. Here, we extend to present a proof
of convergence of the iterative scheme and generalize to any countable frame. As will be
shown, the convergence is very rapid requiring only a few iterations. We give a mathematical
foundation to the coherent state representation and present an efficient and practical way to use
this set and more general non-orthogonal sets of functions for representing arbitrary functions.
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The general question of using non-orthogonaland overcomplete sets to represent vectors is
studied using the concept of frames [2]. In the present paper, we connect the discrete coherent
state representation to the method of Gabor analysis [3], which builds on frames. Gabor
analysis has mostly been applied to signal analysis, but could potentially be of great interest
also to the physics community. It is perhaps not unexpected that the question of economic
representation of wavefunctions is related to optimal representations of time signals.

In signal analysis the aim is to find suitable expansion coefficients and then reconstruct
the signal in a robust way. For Gabor analysis this can be achieved by using a Gaussian
windowed Fourier transform to compute Gabor frame coefficients. To reconstruct the signal
an inverse Fourier transform with a different window is performed. This window is called
a dual window to the Gaussian window, and may in general not be easy to find. To be of
use in quantum dynamics it must also be possible to perform various operations within the
representation, such as scalar products, application of operators, etc. This is where matrix
representations of the identity, as defined in this paper, become of use. We also show how
to economize the computation in the case of coherent states by using phase-space translation
properties to construct the entire matrix from a single column. By the use of this, the iterative
scheme becomes very efficient computationally.

Coherent states have been of great use in quantum mechanics and especially for quantum
optics [4, 5]. Many different types of coherent states exist, but here we consider the
Gaussian coherent states. These have, for example, been useful for deriving semi-classical
approximations of the propagator due to the ‘classical’ properties of these space and momentum
localized states [6]. One of the motivations for this study is the possibility of using the coherent
state representation for solving the time-dependent Schrödinger equation [1, 7, 8].

Previous attempts to use coherent states as a basis set for wavefunctions have solved the
problem of non-orthogonality by traditional methods,e.g. singular-value decomposition (SVD)
to construct a (pseudo) inverse to the overlap matrix [7]. The problem is the unfavourable
scaling of the SVD with respect to the number of coherent states. Also the SVD procedure
gives a full matrix whereas the present scheme can give a sparse matrix. Another possibility
is to take a dense enough sampling of coherent states [8] in order for the frame operator to be
close to the identity operator. This requires about a factor of ten oversampling to reach double
precision accuracy, as will be shown.

This paper is organized as follows. In section 2 we review general properties of frames.
Section 3 defines frames of coherent states and makes the connection to Gabor frames.
Section 4 introduces the iterative method for computing matrix representations of the identity.
Phase-space translation properties are studied in section 5 and are shown to reduce the effort
needed for performing the iterations. Examples on how to compute operator matrix elements
by normal ordering are shown in section 6. Finally, in section 7 we show a few illustrations.

2. Frames

In the following H denotes a complex separable Hilbert space. The inner product of the
Hilbert space is denoted by 〈·|·〉 and ‖·‖ = √〈·|·〉 denotes the norm. H can in general be any
separable complex Hilbert space, finite-dimensional or infinite-dimensional. In the concrete
examples, H will be the space L2(R) of square integrable complex-valued functions over the
real numbers. A frame (see, e.g., [2, 3], and references therein) is a set of vectors {|ψx〉}x∈X
with |ψx〉 ∈ H and where X is an index set (possibly overcountable), such that

A‖ψ‖2 � 〈ψ|Q̂|ψ〉 � B‖ψ‖2 ∀ψ ∈ H (1)

0 < A � B < ∞ (2)
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where the frame operator is defined as Q̂ = ∫ |ψx〉〈ψx | dx. In the following, we will assume
that A,B are the optimal frame bounds, i.e. with A the largest and B the smallest numbers
fulfilling (1). Here, we will be concerned with countable frames for which the index set X is
countable. Then the frame operator is defined as

Q̂ =
∑
k

|ψk〉〈ψk | (3)

with each |ψk〉 ∈ H. (In the case of an infinite number of elements the summation should be
interpreted in the sense of strong operator convergence [9].)

Frames admit representation of vectors by superposition,

|χ〉 =
∑
k

|ψk〉dk. (4)

Note that the vectors that constitute a frame do not need to be orthogonal or normalized.
However, the connection between the overlaps, ck = 〈ψk|χ〉, and the expansion coefficients,
dk, in the above equation is not straightforward (cf for an orthonormal set where dk = ck).
One complication is that in general the coefficients dk in (4) are not uniquely determined by
|χ〉. We seek a simple method of computation of the expansion coefficients.

An especially simple case is if the constants A and B in (2) can be chosen equal,

Q̂ = A1̂ (5)

for some A > 0, where 1̂ is the identity operator. Then the frame is a tight frame. The special
case of tight frames can be seen as a generalization of the concept of bases, in that they can be
used for expansion of a state similar to the way bases can. If {|ψk〉}k is a tight frame (with A
given by equation (5)) then

|χ〉 = 1

A

∑
k

|ψk〉〈ψk |χ〉 ∀|χ〉 ∈ H (6)

which follows directly from equation (5). Note that also for tight frames the coefficients dk in
(4) are not uniquely determined by |χ〉, and (6) is just one possible choice.

To compute the expansion coefficients for a general frame, the dual frame is introduced.
A frame {|ψ̃k〉}k is a dual frame to {|ψk〉}k if∑

k

|ψ̃k〉〈ψk | =
∑
k

|ψk〉〈ψ̃ k| = 1̂. (7)

In general there are many dual frames to a given frame. The canonical dual frame (or just
canonical dual) is defined as

|ψ̃◦
k〉 = Q̂−1|ψk〉 (8)

with Q̂ being the frame operator. That the frame operator Q̂ is invertible was shown in [2]. In
essence, the invertibility of Q̂ follows from the fact that Q̂ is a bounded positive operator with
Q̂ � A1̂ with A > 0. This condition guarantees that the spectrum of Q̂ is ‘kept away’ from
zero, which is the problematic point of the inverse. Another important consequence is that the
inverse Q̂−1 is a bounded operator with Q̂−1 � A−11̂. As seen from equation (7), duals give
us a possibility of calculating expansion coefficients in (4) as dk = 〈ψ̃k|χ〉. We will discuss
how to practically compute the dual and the expansion coefficients in section 4.

The canonical dual has the special property that if {|ψk〉}k is a frame, |χ〉 is an arbitrary
element in H and (ck)k is a sequence of complex numbers such that

|χ〉 =
∑
k

ck|ψk〉 (9)
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then ∑
k

|ck|2 �
∑
k

|〈ψ̃◦
k|χ〉|2. (10)

For a proof see [2]. Hence, the canonical dual gives us, in this respect, the minimal size of the
expansion coefficient vector.

Although definitions (1), (2) give a precise description of what a frame is, it may perhaps
be useful to give a short description of the flexibility of the frame concept. The elements of
a frame need not be orthogonal to each other, nor do they have to be normalized. They need
not be linearly independent. In the case of a frame on a finite-dimensional Hilbert space, the
number of frame elements may exceed the dimension of the space (the number of elements
may even be infinite). A frame is always a complete set, but every complete set is not a
frame. A frame may be overcomplete, which means that an element can be taken away and
the set is still complete. In other words, frames are much more flexible objects than complete
orthonormal bases. For a review of completeness and of some of the many different versions
of definitions of linear independence in infinite-dimensional Hilbert spaces, see [10, 11].

3. Gabor frames and coherent states

In this section, we discuss two types of frames, regular Gabor frames and the closely related
frames of coherent states. For a recent review on Gabor analysis, see [3].

Given a function g ∈ L2(R) we can construct a set of translated and momentum shifted
functions

gm,n(x) = g(x − na) e2π imbx (11)

where (m, n) are integers and a, b > 0 are lattice parameters. The function g ∈ L2(R) is
called the Gabor atom. The set {gm,n}m,n forms a regular Gabor set. The word ‘regular’ refers
to the regularity with which we distribute translation and momentum shifts. If the Gabor set
is a frame it is called a Gabor frame. A common choice of Gabor atom is a Gaussian function,

g(x) = π−1/4 exp[−x2/2] (12)

with the width being equal to unity. For a Gabor set to form a frame it is a necessary (but
not sufficient) condition that the lattice is sufficiently dense in the phase plane. In the case of
regular Gabor frames it has been shown that it is a necessary condition that ab < 1 [12, 13]
(see [3] for an explanation). In the specific case of regular frames of Gaussian functions it
has been shown that ab < 1 is both a sufficient and necessary condition for the formation of
a frame [14–16].

As for any frame we can define the dual frames and specifically the canonical dual
g̃◦
m,n = Q̂−1gm,n as given by (8), where Q̂ is the frame operator of {gm,n}m,n. From

the properties of Gabor frames one can show [3, 17] that the dual frame {g̃◦
m,n}m,n can be

constructed with translations and momentum shifts as in (11) with the (canonical) dual Gabor
atom g̃◦ = Q̂−1g,

g̃◦
mn(x) = g̃◦(x − na) e2π imbx. (13)

Now we turn to a frame of coherent states which is very closely related to the Gabor
frame with a Gaussian Gabor atom, equation (12). Coherent states for a harmonic oscillator
are generated by a displacement of the ground state (see, for example, [18])

|α〉 = D̂(α)|0〉 = eαâ
†−α∗ â|0〉 (14)
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where â and â† are the annihilation and creation operators of the harmonic oscillator. These
states constitute a two-parameter (real) family which defines a phase-space (q, p) according
to α = 1√

2
(q + ip). The scalar product of two such states is given by

〈α|α′〉 = exp[−(|α|2 + |α′|2)/2 + α∗α′]
= exp[−(q − q ′)2/4 − (p − p′)2/4 + i(qp′ − pq ′)/2]. (15)

The position representation of the coherent state is given by

〈x|α〉 = π−1/4 exp[−(x − q)2/2 + ip(x − q/2)]. (16)

A discrete set of coherent states can be defined on a phase-space lattice as

{|αm,n〉}mn αm,n = 1√
2
(qn + ipm) = 1√

2
(na + i2πmb) (17)

where a, b > 0 are lattice parameters and where

qn = an pm = 2πbm. (18)

The Gabor frame (11) with Gaussian atom (12) and the set of coherent states defined by
equations (16) and (17), differ only in the choice of phase

gm,n(x) = 〈x|αm,n〉 exp [ipmqn/2]. (19)

Since these two sets differ only in phases it follows that the frame operators for the two
sets are the same, and hence the set of coherent states forms a frame if and only if the
corresponding Gaussian Gabor frame does. The frame condition can be formulated in terms
of the phase-space sampling density

D = 1

ab
= 2π

�q�p
(20)

where�q,�p are the lattice grid separations in position and momentum. Hence the coherent
state set (17) is a frame if and only if D > 1.

4. Iterative method for calculation of the canonical dual

In the previous paper [1], an iterative method for calculating expansion coefficients of arbitrary
vectors in a given frame was introduced for coherent state frames. Here we generalize this
method to general countable frames. We will give a sketch of the proof and include some
important aspects to understand the properties of the algorithm. For a proof with more
technical details considered we refer to [19].

Consider a general countable frame {|ψj 〉}j . Similar to the case of complete orthonormal
basis we can use frames to represent operators on H with matrices,∑

i,j

|ψi〉Wij 〈ψj | = Ŵ . (21)

As in the case of expansion of vectors in the frame, we have that the matrixWij is not unique.
The matrix elementWij can be computed with

Wij = 〈ψ̃ i|Ŵ |ψ̃j 〉 (22)

where {|ψ̃j 〉}j is any dual frame to {|ψj 〉}j . Now consider matrix representations of the
identity operator. Given a frame {|ψk〉}k there always exists a matrix with elements Fij such
that ∑

i,j

|ψi〉Fij 〈ψj | = 1̂. (23)
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(For example, Fij = 〈ψ̃ i |ψ̃j 〉.) Hence, the matrix Fij is a representation of the identity
operator in the frame. (It is important to note that Fij in general is different from the identity
matrix δij , and that the identity matrix δij is a representation of the identity operator only in
the cases where the frame operator is the identity operator, i.e. only for a tight frame with
A = 1.) Such an identity representation matrix Fij can be used to expand an arbitrary vector

|χ〉 =
∑
ij

|ψi〉Fij 〈ψj |χ〉. (24)

This suggests a very close relation between these representations of the identity operator
and dual frames. Indeed, given two dual frames

{∣∣ψ̃ak 〉}k and
{∣∣ψ̃bk 〉}k we can construct a

representation of the identity operator such as Fij = 〈
ψ̃ai

∣∣ψ̃bj 〉, by the use of equation (7)
for each dual frame. This illustrates a point crucial for the understanding of the following
derivations, namely that the representation of the identity operator with respect to a frame
is, in general, not unique. Among all the representations there is, however, one special
representation, which we will call the canonical identity representation (or just canonical
representation) which we define as

F ◦
ij = 〈ψ̃◦

i |ψ̃◦
j 〉. (25)

Hence, the canonical representation of the identity operator is nothing but the overlap matrix
of the canonical dual. As will be seen, the canonical representation is closely related to the
iterative scheme discussed below.

The following iterative method to compute a representation of the identity operator was
proposed in [1]. It was formulated in terms of the special case of a coherent state frame. Here
we will formulate it in terms of general countable frames. Define the sequence of matrices
F
(n)
ij according to{

F
(0)
ij = δij

F
(n+1)
ij = 2F (n)ij − ∑

k,l F
(n)
ik 〈ψk|ψl〉F (n)lj .

(26)

We will show that this iterative scheme gives a sequence of matrices F (n)ij that yield better
and better approximations of a representation of the identity operator. Suppose that we have
a matrix F appr

ij that gives an approximation to a representation of the identity operator. This
approximate representation can be used, as in (24), to give an approximate expansion of an
arbitrary vector of the Hilbert space. A reasonable choice of error measure would be the norm
of the difference between the approximately expanded vector and the original vector and find
the vector that gives the maximum error (among the normalized vectors). The maximal error
is then

err(F appr) = sup
‖χ‖=1

∥∥∥∥∥|χ〉 −
∑
ij

|ψi〉F appr
ij 〈ψj |χ〉

∥∥∥∥∥
=

∥∥∥∥∥1̂ −
∑
ij

|ψi〉F appr
ij 〈ψj |

∥∥∥∥∥ (27)

where ‖·‖ in the second line denotes the standard operator norm

‖Ŵ‖ = sup
‖χ‖=1

‖Ŵ |χ〉‖. (28)

As seen, the same symbol ‖ · ‖ will be used both for the norm of vectors in a Hilbert space and
for the operator norm of operators on a Hilbert space. Which one is intended is determined
by the object it acts on. Since the sequence of approximations produced by (26) is to be used
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for expansions of arbitrary vectors, a suitable criterion of convergence of (26) is whether or
not err(F (n)) goes to zero. Hence, it is not really important whether these matrices themselves
converge to a specific representation of the identity operator, but whether or not the error
measure goes to zero. In a sense we could say that we are satisfied that the sequence F (n)ij

converges to the set of representations of the identity operator.
With the convergence criterion established we may now proceed to prove that (26) indeed

gives better and better expansions. We define the operators

Q̂n =
∑
i,j

|ψi〉F (n)ij 〈ψj |. (29)

Note that Q̂0 is the frame operator Q̂ in (3). By combining (29) with (26) we obtain

Q̂n+1 = 2Q̂n − Q̂2
n. (30)

With our error measure (27) in mind we define the nth error operator as

R̂n = 1̂ − Q̂n (31)

and obtain from (30)

R̂n+1 = R̂2
n = R̂2n+1

0 . (32)

Hence

err(F (n)) = ‖R̂n‖ = ∥∥R̂2n
0

∥∥ = ‖R̂0‖2n . (33)

It should be noted that in the last equality we have used the fact that R̂0 is a bounded self-adjoint
operator. For a general bounded operator T̂ holds ‖T̂ n‖ � ‖T̂ ‖n, but for bounded self-adjoint
operators the equality always holds [19]. Hence the logarithm of the error decreases in an
exponential fashion, if ‖R̂0‖ < 1. It is not difficult to realize that this is true if and only if the
upper frame bound is strictly less than 2. (The requirement that the lower frame bound should
be strictly larger than zero is already met, since we have a frame.)

To summarize we have shown that the iterative scheme given by (26) gives a good
approximation of a representation of the identity operator very quickly. In the following, we
will show stronger results, namely that with the aid of this algorithm we are able to generate
approximations to the canonical dual and the canonical representation of the identity operator.

Define the sequence of vectors∣∣ψ(n)j 〉 =
∑
i

|ψi〉F (n)ij . (34)

We will now show that if F (n)ij is calculated as described in (26), then
∣∣ψ(n)j 〉

converge to |ψ̃◦
j 〉

for each j . Hence, the iterative scheme in (26), together with (34), will generate successive
approximations to the canonical dual. With Q̂n defined as in (29), by (34) we have

Q̂n =
∑
j

∣∣ψ(n)j 〉〈ψj | (35)

and
∣∣ψ(0)j 〉 = |ψj 〉. When combining (34) and (26) we obtain∣∣ψ(n+1)

j

〉 = 2
∣∣ψ(n)j 〉 − ∑

k

∣∣ψ(n)k 〉〈
ψk

∣∣ψ(n)j 〉
. (36)

Using (35) we can rewrite this as∣∣ψ(n+1)
j

〉 = (21̂ − Q̂n)
∣∣ψ(n)j 〉 = (

1̂ + R̂2n
0

) ∣∣ψ(n)j 〉
(37)
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where we, in the last equality, have made use of (32). Hence∣∣ψ(n)j 〉 =
n−1∏
m=0

(
1̂ + R̂2m

0

) |ψj 〉. (38)

This operator product is possible to write in a closed form using the product limit for complex
numbers [20],

lim
n→∞

n−1∏
m=0

(
1 + z2m) = 1

1 − z
|z| < 1 z ∈ C. (39)

Then follows for the operator product (for a proof, see [19])

lim
n→∞

n−1∏
m=0

(
1̂ + R̂2m

0

) = (1̂ − R̂0)
−1 = Q̂−1

0 . (40)

For the above convergence to hold it is necessary that the spectrum of R̂0 is within an interval
[c, d] with −1 < c � d < 1. This is translated to the requirement that the upper frame bound
of {|ψk〉}k should be strictly less than 2. By combining (38) and (40) we have

lim
n→∞

∣∣ψ(n)j 〉 = Q̂−1
0 |ψj 〉 = |ψ̃◦

j 〉. (41)

Hence, the iterative scheme (26) together with (34) gives a scheme that converges to the
canonical dual of {|ψk〉}k .

Now we turn to the sequence of matrices F (n)ij themselves. As we have argued, the
question of whether this sequence converges element-wise or not, is not really important for
the use of these matrices. At the present stage of investigation, we do not know whether
this sequence does converge or not, although there are numerical indications that it does not.
However, we will now show that from the sequence F (n)ij created by (26), we may construct

another sequence of matricesG(n)

ij that converge to the canonical representation of the identity
operator F ◦

ij . We define

G
(n)

ij = 〈
ψ
(n)

i

∣∣ψ(n)j 〉 =
∑
kl

F
(n)

ik 〈ψk|ψl〉F (n)lj . (42)

By the just established fact that
∣∣ψ(n)j 〉

converge to the canonical dual element |ψ̃◦
j 〉 it follows

that G(n)
ij converge element-wise to the canonical representation F ◦

ij as n goes to infinity.

4.1. Prescaling of the frame

As the previous demonstrations have shown, the iterative scheme converges if the upper frame
bound is strictly less than 2. This is a quite trivial restriction because of the following reason:
if {|ψk〉}k is a frame with frame bounds A,B and if r > 0 then {√r|ψk〉}k is a frame with
frame bounds rA, rB. Hence, if we have a frame with upper frame bound larger than or equal
to 2 we can trivially construct a new frame with upper frame bound less than 2 simply by
multiplying all the frame elements with a sufficiently small number. If we accept the error
measure err(F (n)), we realize from (33) that the speed of convergence is determined by the
size of ‖R̂0‖. The smaller this norm gets the faster the error bounds shrink. This tells us that
we can gain in convergence speed of the iterative scheme by first multiplying the elements of
the given frame with a positive number

√
r . We call this procedure prescaling of the frame.

Among all these scaled frames we may find an optimal r that makes ‖1̂ − rQ̂‖ as small as
possible. We wish to solve the minimization problem

wmin = min
r>0

‖1̂ − rQ̂‖ (43)
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where Q̂ is the frame operator of the given frame. For a bounded, self-adjoint operator Ŵ
holds [9]

‖Ŵ‖ = max(|m|, |M|) (44)

where

m = inf
‖χ‖=1

〈χ |Ŵ |χ〉 M = sup
‖χ‖=1

〈χ |Ŵ |χ〉. (45)

Here m and M are the optimal lower and upper bounds of Ŵ . The frame operator is a bounded
self-adjoint operator and it is not difficult to realize that m = A and M = B, by comparing
with (1) and (2). Hence ‖Q̂‖ = B. Moreover, one realizes that

‖1̂ − rQ̂‖ = max(|1 − rA|, |1 − rB|). (46)

With (46) and (43) we can write

min
r>0

‖1̂ − rQ̂‖ = min
r>0

max(|1 − rA|, |1 − rB|). (47)

Using 0 < A � B we have

max(|1 − rA|, |1 − rB|) =
{

1 − rA r � 2
A+B

rB − 1 r � 2
A+B

. (48)

By this

wmin = min
r>0

‖1̂ − rQ̂‖ = B − A

B +A
(49)

and this minimum is obtained at

r = rmin = 2

A + B
. (50)

We call the minimal value (49) the essential tightness of the frame. Hence given a frame with
frame bounds A,B we precondition the frame by multiplying the frame elements with

√
rmin

(which is the same as dividing the frame operator with the average of the upper and lower
frame bounds). We say that the frame is optimally prescaled if the norm of the operator R0 is
equal to the essential tightness. We note that due to A > 0 we have that 1 > wmin and B � A

leads to wmin � 0 with equality if and only if the frame is tight.
In summary, the algorithm (26) works if the frame is sufficiently tight, i.e. if the upper

frame bound is strictly less than 2. By multiplying the frame with a sufficiently small positive
number we can always get the iterative scheme to work. Among all these trivially different
frames the optimally prescaled frame is the one that gives the fastest convergence. To make a
frame optimally prescaled requires knowledge of the frame bounds. In many cases it can be a
very difficult task to get the frame bounds and one must be satisfied with estimates. But to get
the iterative scheme to converge (but perhaps not in the fastest way) it is sufficient to multiply
the frame elements with

√
2/Best, where Best is a (strict) upper estimate of the upper frame

bound.

5. Phase-space translations

We have seen that the canonical representation, F ◦
ij , of the identity operator can be used to

expand arbitrary vectors in the frame. If this is to be used as a numerical method in practice we
must have an efficient method for computing and usingF ◦

ij . In this section, we study translation
properties of Gabor frames and coherent state frames, which are especially appealing from the
computational point of view.
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Let {|gm,n〉}m,n be a regular Gabor frame with lattice constants a, b as in (11). Using
equation (11) gives for the overlap matrix

〈gm+k,n+l |gm′+k,n′+l〉 = 〈gm,n|gm′,n′ 〉 e2π iab(m′−m)l. (51)

This is, as a special case, true for the Gabor frame with a Gaussian Gabor atom (12). This
should be compared with the corresponding expression for the coherent states, as defined in
equations (16) and (17),

〈αm+k,n+l |αm′+k,n′+l〉 = 〈αm,n|αm′,n′ 〉 eiπab((m′−m)l−(n′−n)k) (52)

which can be derived either directly from the definition of this frame, (16) and (17), or from (51)
and the expression for the phase difference (19). From (13) it follows that the overlap matrix
of the canonical duals of the Gabor frame 〈g̃◦

m,n|g̃◦
m′,n′ 〉 has the same translation properties

(51) as the overlap matrix 〈gm,n|gm′,n′ 〉. As discussed in section 3, both the Gaussian Gabor
frame and the corresponding frame of coherent states have the same frame operator. By the
definition of the canonical dual (8) the same phase relation as in (19) follows

|g̃◦
m,n〉 = |̃α◦

m,n〉 eipmqn/2. (53)

Hence it follows that the coherent state canonical dual frame has the phase-space translation
property

〈̃α◦
m+k,n+l |̃α◦

m′+k,n′+l〉 = 〈̃α◦
m,n |̃α◦

m′,n′ 〉 eiπab((m′−m)l−(n′−n)k). (54)

In the rest of this section we will concentrate on the frame of coherent states {|αm,n〉}m,n.
For the sake of notational simplicity we introduce a collective index i = (m, n) and denote
the set of coherent states as {|αi〉}i , with qi = qn and pi = pm. Using this collective index,
we rewrite equation (54) by inserting k = −m′, l = −n′ and letting j = (m′, n′) to finally get

F ◦
i,j = F ◦

i−j,0 ei(pj qi−piqj )/2. (55)

Hence, given a row (or a column) of the canonical representation we can reconstruct the whole
matrix. (Note that we say ‘row’ in spite of the fact that this ‘row’ due to the collective index
actually is a matrix. The whole ‘matrix’ F ◦ is a four-dimensional array.)

Now we use these translation properties of the coherent states to simplify the calculations
in the iterative procedure described in section 4. What we want to show is that in the case
of a frame of coherent states, the iterative procedure described by (26) can be simplified
in that we never need the whole matrix F (n)ij , but only one row of it. The overlap matrix
Si,j = 〈αi |αj 〉 have the same translation property as in (55); moreover, the identity matrix
δij (to be interpreted as δn,n′δm,m′ ) trivially possesses the same translation property. It is,
moreover, possible to show (by direct calculation) that if two matrices possess this translation
property, then both their sum and their product possess the same translation property (with the
same phase factors). By induction we can now show that each matrix F (n) in the sequence
defined by (26) has the translation property. This makes the following reformulation of (26)
possible in the case of a frame of coherent states{

F
(0)
i,0 = δi0r

F
(n+1)
i,0 = 2F (n)i,0 − ∑

j,k F
(n)

i−j,0F
(n)

k,0 e
i
2 φi,j,k− 1

4 ((qj−qk)2+(pj−pk)2)
(56)

φi,j,k = pjqi − piqj + qjpk − pjqk

where r is the prescaling factor. To derive this we made use of the expression for the coherent
state overlap matrix (15). The fact that we in this way can restrict the computation to a single
column of the F (n) matrix means a very large saving in both memory needed and the number
of operations needed in the computation.
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6. Useful expressions

In this section, we list a series of useful expressions in order to facilitate the practical use
of the representation. For the sake of simplicity, we will assume throughout this section
that the frames used are the frames of coherent states and that the representation of identity
used is the canonical representation, although some of the rules to a varying degree can
be generalized to more general frames and more general representations of the identity. The
canonical representation of the identityF ◦

ij gives a method to compute the canonical expansion
coefficients fi in |χ〉 = ∑

i |αi〉fi , given the overlap coefficients cj = 〈αj |χ〉, via the equation

fi =
∑
j

F ◦
ij cj . (57)

If one wishes to perform computations within the representation that the frame provides, it
is important to express standard manipulations as scalar products and application of operators.
Consider ci and c′

j to be the overlap coefficients of |χ〉 and |ψ〉 respectively, then the scalar
product is computed as

〈χ |ψ〉 =
∑
ij

c∗
i F

◦
ij c

′
j . (58)

Suppose now that the vectors are related via application of an operator Â as |ψ〉 = Â|χ〉,
and that Â has the matrix elements Aij = 〈αi |Â|αj 〉 then the relation between the overlap
coefficients becomes

c′
j =

∑
k

AjkF
◦
kici . (59)

In general, the matrix elementsAij must be computed by numerical quadrature. However,
in the cases when the operator Â can be written as Â = A(â†, â), whereA is a function possible
to express in series expansion, we can find analytic expressions for the matrix elements
〈αi |A(â†, â)|αj 〉, cf [8]. For such operators

〈αi |A(â†, â)|αj 〉 = 〈αi |αj 〉Aord(α
∗
i , αj ) (60)

where Aord(â
†, â) is A(â†, â) written in a normal ordered form. That is, we rewrite A(â†, â)

using commutation relations, such that it only contains summands where in each summand all
annihilation operators stand to the left of the creation operators. As an example consider

Â = â + â2â†. (61)

Using the commutation relation [â, â†] = 1̂ this can be written in the normal order

Â = 3â + â†â2 (62)

and hence

〈αi |Â|αj 〉 = 〈αi |αj 〉
(
3αj + α∗

i α
2
j

)
. (63)

Using the normal ordering we can derive the following expressions for the matrix elements
of powers of the position and of the momentum operator. The higher powers are expressed in
terms of recursion relations. Define

X
(n)
ij = 〈αi |x̂n|αj 〉 P

(n)
ij = 〈αi |p̂n|αj 〉. (64)

By using x̂ = 1√
2
(â† + â) and p̂ = i√

2
(â† − â) follows

X
(1)
ij = 1√

2
(α∗
i + αj )Sij

X
(2)
ij = 1

2 (1 + (α∗
i + αj )2)Sij

X
(n)

ij = 1√
2
(α∗
i + αj )X

(n−1)
ij + n−1

2 X
(n−2)
ij

(65)
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P
(1)
ij = i√

2
(α∗
i − αj )Sij

P
(2)
ij = 1

2 (1 − (α∗
i − αj )

2)Sij

P
(n)
ij = i√

2
(α∗
i − αj )P

(n−1)
ij + n−1

2 P
(n−2)
ij

(66)

where

Sij = 〈αi |αj 〉 αi = 1√
2
(qi + ipi). (67)

Potentials that can be expressed as a sum of exponentials can also be put in a normal form
in a straightforward way. One such example which has relevance for molecular physics is the
Morse potential [21]

V (x) = 1 + e−2β(x−x0) − 2e−β(x−x0) (68)

where x0 and β are parameters. The operator V (x̂) can be put in normal order by
the use of the Campbell–Baker–Hausdorff theorem, see e.g. [5], which states that if
[Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0 then

es(Â+B̂) = esB̂ esÂ e
1
2 s

2[Â,B̂] (69)

for any real number s. By this

V (x̂) = 1̂ + e2βx0 e−√
2β(â+â†) − 2 eβx0 e− 1√

2
β(â+â†)

= 1̂ + e2βx0+β2
e−√

2βâ†e−√
2βâ − 2 eβx0+ 1

4β
2

e− 1√
2
βâ† e− 1√

2
βâ (70)

where the last line is normal ordered. Hence

Vij = 〈αi |V (x̂)|αj 〉 = Sij

[
1 + e2βx0+β2−√

2β(α∗
i +αj ) − 2eβx0+ 1

4β
2− 1√

2
β(α∗

i +αj )
]
. (71)

7. Some illustrations

Here, we give some examples of the use of frames of coherent states, i.e. the discretized
coherent state representation. For all the examples presented we have used a symmetric
phase-space sampling with �q = �p, which have turned out to be the most efficient in
terms of convergence. The convergence of the iterative scheme for computing the expansion
coefficients is shown in figure 1, and confirms the very rapid decay of the representation error.
The test vector used was a squeezed Gaussian centred on an arbitrary position in phase-space,
but identical results are obtained for all functions that are sufficiently supported on the selected
phase-space grid points. Also a similar convergence of the canonical dual defined from (34)
was found. In order to have a frame and to get convergence of the iterative scheme the
density D has to be larger than one. However, only a slight oversampling is necessary, e.g.
D = 1.2 gives convergence to double precision in five iterations. In practice, it is found
that using r = 1/D as a prescaling in equation (56) gives good convergence speeds. As can
be inferred from the figure, the frame operator becomes the identity operator for sufficiently
dense sampling, e.g. for D = 10 the error is down to 10−13. But this large oversampling
means a tenfold increase in the number of expansion coefficients necessary for representing a
given function.

The canonical matrix representation of the identity, F ◦
ij , is localized around the diagonal,

and the magnitude decreases away from the diagonal, i.e. with increasing phase-space distance.
In figure 2, we show the rowF ◦

i,0, which is real valued, as a function of the phase-space position
(qi, pi). In practical computations we truncate the row at a specified distance from the origin,
i.e. far off-diagonal elements are put to zero.
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Figure 1. Convergence of iterative scheme for different sampling densities D. The representation
error ‖|ψexpanded〉 − |ψexact〉‖ of a test vector is shown. Note the fast convergence even for only
minor oversampling. The zero iteration error represents the error in the frame operator as compared
to identity.

−10 −5 0 5 10
−0.5

0

0.5

1

q q

p

−10 −5 0 5 10

−10

−5

0

5

10

(a) (b) 

Figure 2. One row F ◦
i0 of the canonical matrix representation of the identity for a density of

D = 1.2. In (b) the elements are shown as a function of phase-space position (qi , pi ), in units of
�q and �p resp. Black is positive and white is negative. In (a) the values are given for the line
pi = 0. Note the symmetry which is due to the symmetric sampling of the phase-space.

Two examples of functions that may arise in molecular context are eigenstates in the
Morse [21] and the Rosen–Morse [22] potentials. In figure 3, the wavefunctions for the
n = 40 eigenstate, close to the dissociation limit, are shown together with the magnitude of
the overlap coefficients as a function of the phase-space position.

8. Summary

In an earlier investigation a numerical method for calculating representations of arbitrary
quantum states in frames of coherent states was presented. This was motivated by the goal of
developing a compact and fast technique for state propagation in realistic models of molecular
systems. In this investigation, we have formalized this method in terms of frames and
specifically in terms of frames of coherent states and the closely related Gabor frames, which
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Figure 3. (a) and (b) The n = 40 eigenstate in a Morse potential (D = 1.2). (c) and (d) The n = 40
eigenstate in a symmetric Morse potential (D = 1.2). In (a) and (c) the position representations are
shown and in (b) and (c) the discretized coherent state representations are shown. The magnitudes
of the complex overlap coefficients are shown with white being zero and increasing values as
darker shades.

have been used in the context of signal analysis. In this setting, we have presented an overview
of a proof of the iterative method and have confirmed the high convergence rate that the earlier
numerical experiments indicated. We have shown that the iterative method is not limited to
frames of coherent states and Gabor frames, but can be applied to any countable frame on a
complex separable Hilbert space, after a prescaling of the frame. Moreover, we have shown
that in the special case of regular frames of coherent states, certain phase-space translation
properties can reduce the computational and memory needs. The iterative scheme might also
be of use in Gabor analysis as a tool for computing dual windows.

For future use and to facilitate applications of this method we have also demonstrated some
simple but important rules how to make calculations within the coherent state representation.
We have shown with examples and explicit formulae that many operators which can be
written as combinations of creation and annihilation operators (e.g. position and momentum
operators) have matrix elements, in the coherent state representation, that can be calculated
analytically by the use of normal ordering and hence are straightforward to implement in
numerical calculations. Finally, we have presented some examples to give a feeling for the
‘phase-space picture’ of quantum mechanics that the coherent state frames provide and how
this can be used for efficient and flexible representations of wavefunctions.
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